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Abstract 

This paper presents early experience with a typed programming language and compiler for run-time code 
generation. The language is an extension of the SML language with modal operators, based on the AD 

language of Davies and Pfenning. It allows programmers to specify precisely, through types, the stages of 
computation in a program. The compiler generates target code that makes use of run-time code generation 
in order to exploit the staging information. The target machine is currently a version of the Categorial 
Abstract Machine, called the CCAM, which we have extended with facilities for run-time code generation. 
Using this approach, the programmer is able to express the staging that he wants to the compiler directly. It 
also provides a typed framework in which to verify the correctness of his staging intentions, and to discuss his 
staging decisions with other programmers. Finally, it supports in a natural way multiple stages of run-time 
specialization, so that dynamically generated code can be used to generate yet further specialized code. 
This paper presents an overview of the language, with several examples of programs that illustrate key 
concepts and programming techniques. Then, it discusses the CCAM and the compilation of AD programs 
into CCAM code. Finally, the results of some experiments are shown, to demonstrate the benefits of this 
style of run-time code generation for some applications. 



1    Introduction 

In this paper, we present a programming language 
that allows programmers to specify stages of compu- 
tation in a program, along with an implementation 
technique based on run-time code generation for ex- 
ploiting the staging. 

A well-known technique for improving the perfor- 
mance of a computer program is to separate its com- 
putations into distinct stages. If this is done carefully, 
the results of early computations can be exploited in 
later computations in a way that leads to faster ex- 
ecution. To achieve this effect, programmers often 
stage their program manually, using ad hoc meth- 
ods; there have also been some attempts to make 
such staging transformations more systematic [16]. 
Another approach, used in partial evaluation [8], is 
to automate the staging of programs according to a 
programmer-supplied indication of which program in- 
puts will be available in the first stage of computa- 
tion. This information is used to synthesize a gen- 
erating extension that will generate specialized code 
for the late stages of the computation when given the 
first-stage inputs. More recent work has extended the 
partial evaluation framework to account for multiple 
computation stages [7]. 

In recent years, several researchers have studied the 
use of run-time code generation (RTCG) to exploit 
staged computation [1, 3, 9, 10, 12]. One advantage of 
RTCG is that opens the possibility of low-level code 
optimizations (such as register allocation, instruction 
selection, loop unrolling, array-bounds checking re- 
moval, and so on) to take advantage of values that are 
not known until run time. Such optimization cannot 
normally be expressed by a source-to-source transfor- 
mation 

In order to make use of RTGC, a compiler must 
first understand how the program's computations are 
staged. Determining this staging information is not 
a simple matter, however. While automatic binding- 
time analyses have been used by partial evaluators 
and some compilers (notably the Tempo system [1]), 
we are interested here in developing a programming 
language that supports a systematic method for de- 
scribing the computation stages. Besides provid- 
ing the programmer with full control over when and 

where RTCG occurs, we believe the overall imple- 
mentation should also become much simpler since the 
complexity of a sophisticated automatic analysis can 
be avoided. 

The idea of using a programming notation for stag- 
ing is far from new. The backquote and antiquote 
notation of Lisp macros, for example, provides an in- 
tuitive though highly error-prone approach to staged 
computation. More recent annotation schemes used 
by RTCG systems include that of 'C [3] and Fabius 
[10]. These languages allow the programmer to com- 
municate his intentions to the compiler in a relatively 
straightforward manner. Unfortunately, in the case 
of the Fabius system, the annotation scheme is ex- 
tremely simple, thus limiting the ability of the pro- 
grammer to express staging decisions. The difficulty 
in 'C (and Lisp), on the other hand, is that there is no 
direct way to ensure that the staging behavior which 
the programmer specifies is correct: programs can be 
(and are) written that will result in run-time errors. 
Such errors include referencing a variable that is not 
yet available, and referencing variables which are no 
longer available. 

We propose that an extension of the SML language 
and type system can be used as a clear and expressive 
notation for staged computation. Drawing on previ- 
ous work on the language AD [2] which is based 
on the modal logic S4, and on the interpretation of 
this language for run-time code generation described 
in [18], we present an implementation of a prototype 
compiler for a version of the SML language (without 
modules) that uses modal operators to specify early 
and late stages of a program's computation. We then 
apply compilation techniques patterned after those 
developed for the Fabius system [10] in order to com- 
pile programs into code that performs RTCG accord- 
ing to the mode of each subexpression in the program. 
We believe that using the modal source language has 
the following advantages: 

• The programmer is able to express the staging 
that he wants to the compiler directly, rather 
than indirectly through a heavyweight (and usu- 
ally unpredictable) analysis. 

• The programmer is given a framework which al- 
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lows him to verify the correctness of his stag-      Types 
ing intentions.  A staging error becomes a type 
error which can be analyzed and fixed, rather      Terms 
than simply resulting in a slow or incorrect im- 
plementation.   Furthermore, this framework is 
useful for conceptualizing and discussing staging 
with other programmers through typing specifi-      Contexts     T 
cations. 

A,B 

M,N     ::= 

A-+B | DA 

x | Xx.M | MN 
| u | code M | lift M 
| let cogen u = M in N 

■\T,x:A\T,u:A 

Figure 1: AD Syntax 

This approach is complementary to the use of 
automatic staging through binding-time analy- 
sis. A compiler is free to augment the staging 
requirements from a hand-staged program using 
any other means at its disposal. 

The language naturally handles situations in 
which more than two stages are desired, such as 
Fabius-style multi-stage specialization [11]. This 
arises, for example, when dynamically generated 
code can used to compute values that are used 
in the dynamic specialization of yet more code. 

In order to demonstrate these advantages, we 
have implemented a prototype compiler for the Stan- 
dard ML language (without modules), extended with 
modal operators and types. The compiler generates 
code for a version of the Categorial Abstract Ma- 
chine [6], called the CCAM, which is extended with 
a facility for emitting fresh code at run time. 

We begin the paper with a brief introduction to 
the AD language, on which our dialect of SML is 
based. Then, we give a series of program examples, 
to show what it is like to write staged programs in 
our language. These examples are chosen to illus- 
trate different aspects of staged computation, includ- 
ing Fabius-style multi-stage specialization. Next, we 
present the CCAM, followed by a description of how 
AD programs are compiled into CCAM code. Finally, 
we discuss some of the details of the actual implemen- 
tation of our compiler, and present some benchmark 
results to show how staged programs can lead to bet- 
ter performance. 

2    The Modal Lambda-Calculus 

We briefly introduce the language AD which is a sim- 
plification of the explicit version of ML0 described in 
Davies and Pfenning [2]. Although we present only 
AD here because of space considerations, the compi- 
lation technique described in the section 5 extends 
easily to all core SML constructs. Indeed, we have 
implemented a prototype compiler for most of core 
ML extended with the modal constructs. 

2.1     Syntax 

AD arises from the simply-typed A-calculus by adding 
a new type constructor D. Except for the addition of 
lift, it is related to the modal logic 54 by an extension 
of the Curry-Howard isomorphism, where ü^4 means 
UA is necessarily true". 

In our context, we think of DA as the type of 
generators for code of type A. Generators are cre- 
ated with the code M construct. For example, 
h code (Xx.x) : D(A ->■ A) is a generator which, 
when invoked, generates code for the identity func- 
tion and then calls it. Figure 1 presents the syntax 
of AD . Note that there are two kinds of variables: 
value variables bound by A (denoted by a?) and code 
variables bound by let cogen (denoted by u). Their 
role is explained below. 

To invoke a generator, one might expect a corre- 
sponding eval construct of type (DA) —» A. Such a 
function is in fact definable, but not a suitable basis 
for the language. Instead we have a binding construct 
let cogen u = M in N which expects a code genera- 
tor M of type DA and binds a code variable u (which 
we will sometimes call a modal variable).   However, 



even evaluation of let cogen u = M in TV will not 
immediately generate code. 

Code will not be emitted until the modal variable 
u is encountered during evaluation. For example, 

h Ax'.let cogen u= x in u : (OA) A 

is the function eval mentioned above which invokes 
a generator and to create new code, and then evalu- 
ates that code. 

Generation of code is postponed as long as possible 
so that the context into which the code is emitted can 
be used for optimizations. For example, the following 
is a higher-order function which takes generators for 
two functions and creates a generator for their com- 
position. The result may be significantly more effi- 
cient than generating first and then composing the 
resulting functions. Note that this function returns a 
generator, but does not call the given generators or 
emit code itself. 

h Xf.Xg.let cogen /' = / in 
let cogen g' = g in code \x.f'{g'{x)) 

: a(B -> C) -»• D(A -> B) -»■ D(^4 -> C) 

Readers familiar with ML will notice that we 
have added the operator lift, which obeys the rule 
that lift M has type UA if M has type A. lift M 
evaluates M and returns a generator which just 
"quotes" the resulting value. In contrast to code this 
prohibits all optimizations during code generation. 
As noted in Davies and Pfenning [2], lift is definable 
in ML for base types, but its general form has no 
logical foundation. Here we show that it nonetheless 
has a reasonable and useful operational interpreta- 
tion in the context of run-time code generation. 

2.2    Typing Rules 

The typing rules, presented in figure 2, use two con- 
texts: a modal context A in which code variables are 
declared, and an ordinary context T declaring value 
variables. The typing rules are the familiar ones for 
the A-calculus plus the rules for ulet cogen", "code" 
and "lift". 

The critical restriction which guarantees proper 
staging is that only code variables (which occur in 

A) are permitted to occur free in generators (under- 
neath the code constructor), but no value variables. 
The let boxed rule expresses that if we have a value 
which is a code generator (and therefore of type OA), 
we can bind a code variable u of type A which may 
be included in other code generators. 

3    Programming with   MLD 

In order to give a feeling for what it is like to write 
ML    programs we present several examples here. 

3.1     Computing the Value of Polyno- 
mials 

To start with a simple example, consider the follow- 
ing ML function which evaluates a given polynomial 
for a given base. For this function, the polynomial 
cto + a\x + Ü2X2 + ■ ■ ■ anx

n is represented as the list 
[oso, ai,a2,.. -,a„]. 

type poly =  int list; 

val polyl =   [2,4,0,2333]; 

(* val evalPoly  :   int  * poly ~>  int *) 
fun evalPoly  (x,   nil)  = 0 

I   evalPoly (x,   a::p) = 
a +  (x * evalPoly  (x,  p)); 

If this function were called many times with the 
same polynomial but different bases, it might be prof- 
itable to specialize it to the particular polynomial, in 
effect synthesizing an ML function that directly com- 
putes the polynomial rather than interpreting its list 
representation. One way that we can accomplish this 
is by transforming the code as follows. 

fun specPoly (nil) = 

(fn x => 0) 

I specPoly (a::p) = 

let 

val polyp = specPoly p 
in 

fn x => a + (x * polyp x) 

end 



x : A in T A:Th M : A-> B      A:T\- N : A 
A; Thx :,4 

A; ■VM :A 
A rh code M : DA 

u : A in A 
A;rhu:,4 

A; rhMJV : B 

A ;(r, x:A)\-M: B 
A; Th Xx.M : A-> B 

A ;T\- M :A 
AiThlift M :DA 

A;rhM:D,4     (A, u : A); T \- N : B 

A; T h let cogen u — M in N : B 

Figure 2: Typing rules for  AD 

val polyltarget = specPoly polyl; 

While polyltarget is an improvement over the 
more general evalPoly, it is far from the fully special- 
ized result we would like. Without support from the 
compiler, common source-level optimizations are not 
performed, such as unfolding of applications. Fur- 
thermore, code-level optimizations cannot take ad- 
vantage of the staging, for example in instruction se- 
lection and register allocation. Therefore we rewrite 
specPoly as the   MLD function compPoly. 

(* val compPoly  :   poly ->  (int ->  int)  $  *) 
fun compPoly  (nil)  = 

code   (fn x => 0) 
I   compPoly  (a::p)  = 

let 
cogen f = compPoly p 
cogen a'  = lift a 

in 
code  (fn x => a'  +  (x * f x)) 

end 

val codeGenerator = compPoly polyl; 
val mlPolyFun = eval codeGenerator; 

Here the code operator marks the introduction of a 
code generator, and the postfix type constructor $ is 
the ü type. Thus the compPoly function takes a list 
of code generators for integers and transforms it into 
a code generator for a function that computes the 
value of the polynomial for a particular base. 

3.2    Libraries 

Suppose we were to build a library of useful func- 
tions. One possibility afforded by MLD is to install 
staged versions of the library routines, so that client 
applications can benefit from dynamic specialization 
of the library code. 

Consider, for example, placing the compPoly func- 
tion in a library. Then, suppose we have a client 
application program: 

(* val client   :   tl ->   (t2 -> t3)  $  *) 
fun client x = 

...   code  (fn y => 
... compPoly (makePoly y) ...) 

Even though the client program does not have ac- 
cess to the source code of compPoly library routine, it 
is still able to benefit from the fact that it will perform 
RTCG on the polynomial computed by makePoly 
(which presumably has type t2 -> poly). 

This example also illustrates one way multi-stage 
specialization can be achieved in our system. Note 
that the client program takes the argument x and 
generates code for a t2 -> t3 function, and that it 
is this dynamically generated code that invokes the 
compPoly function. Hence, dynamically generated 
code can compute values which in turn are used to 
generate yet more code. This kind of multi-stage spe- 
cialization is extremely difficult to achieve in stan- 
dard partial evaluation, but falls out naturally in our 
framework. 



3.3    Packet Filters 

A packet filter is a procedure invoked by an operat- 
ing system kernel to select network packets for de- 
livery to a user-level process. To avoid the overhead 
of a context switch on every packet, a packet filter 
must be kernel resident. But kernel residence has a 
distinct disadvantage: it can be difficult for a user- 
level process to specify precisely the types of pack- 
ets it wishes to receive, because packet selection cri- 
teria are different for each application and can be 
quite complicated. As a result, many useless packets 
may be delivered, with a consequent degradation of 
performance. A commonly adopted solution to this 
problem is to allow user-level processes to install a 
program that implements a selection predicate into 
the kernel's address space [15, 14]. In order to ensure 
that the selection predicate will not corrupt internal 
kernel structures, the predicate must be expressed in 
a "safe" programming language. Unfortunately, this 
approach has a substantial overhead, since the safe 
programming language is typically implemented by a 
simple (and therefore easy-to-trust) interpreter. 

■As demonstrated by several researchers, run-time 
code generation can eliminate the overhead of in- 
terpretation by specializing the interpreter to each 
packet filter program as it is installed. This has the 
effect of compiling each packet filter into safe native 
code [5, 10, 13, 17]. To demonstrate this idea in our 
language, consider the following excerpt of the imple- 
mentation of a simple interpreter for the BSD packet 
filter language [14] in SML. 

(* val evalpf   :   instruction array * 
* int array * 
* int *  int  *  int -> int 
* Return 1 to select packet,  0 to reject, 
* "1  if error 
*) 

fun evalpf (filter, pkt, A, X, pc) = 

if pc > length filter then "1 

else case sub (filter, pc) of 

RET_A => A 

I RET_K(k) => k 
I LD_IND(i) => 

let val k = X + i in 

if k > length pkt then "1 

else 
evalpf  (filter,  pkt, 

sub(pkt.k), X,   pc+1) 
end 

The interpreter is given by a simple function called 
evalpf, which is parameterized by the filter program, 
a network packet, and variables that encode the ma- 
chine state. The machine state includes an accumu- 
lator, a scratch register, and program counter. 

In order to stage this function, it is straightfor- 
ward to transform the code so that the packet fil- 
ter program and program counter are "early" values, 
and the packet, accumulator, and scratch register are 
"late." Then, the computations that depend only on 
the late values can be generated dynamically by en- 
closing them in code constructors. 

(* val bevalpf   : 
* (instruction array * int) -> 

* (int * int * int array -> int) $ 

*) 
fun bevalpf (filter, pc) = 

if pc > length filter then (fn _ => "1) 
else case sub (filter, pc) of 

RET_A => code (fn (A,X,pkt) => A) 

I RET_K(k) => 

let cogen k' = lift k in 
code (fn _ => k') 

end 

I LD_IND(i) => 

let cogen ev = 

bevalpf (filter, pc+i) 

cogen i' = lift i 
in 

code (fn (A.X.pkt) => 

let val k = X + i' in 

if k >= length pkt 
then "1 

else ev (sub(pkt,k), 

X, pkt) 

end) 

When   applied   to   a  filter   program   and   program 
counter, the result of bevalpf is the CCAM code 



of a function that takes a machine state and packet, 
and computes the result of the packet filter on that 
packet and state. Later, in Section 6, we show that 
the improvement in execution time for a typical BPF 
packet filter is substantial. 

3.4    Memoizing   MLD Programs 

Since specializing programs at run time typically in- 
volves additional expense, a central assumption of 
this approach is that the specialized code generated 
will often be used many times. This happens natu- 
rally in some programs. If, for example, a program 
specializes a section of code and then immediately, in 
the same scope in the code, uses that specialized code 
many times, it is easy to bind the generated code to 
a variable and use that variable, thereby avoiding re- 
generation of the code. In other situations we must 
work harder to get this sort of "memoizing" behavior. 

Consider the following specializing function to 
compute the value of an integer raised to the power 
of e. 

(* val  codePower  :   int ->   (int -> int)$ *) 
fun codePower e = 

if  e = 0 then 
code   (fn _ =>  1) 

else 
let 

cogen p = codePower (e - 1) 
in 

code (fn b => b * (pb)) 
end 

If this function is used to compute powers in two 
or more sections of the same program, it is possible 
that the same code will be generated and regenerated 
many time, making the result program slower rather 
than faster. We must carefully arrange to have gen- 
erated programs saved for future use in situations 
where we think are likely to be needed again. For- 
tunately, we can bind up this functionality with the 
function itself. 

get   :   ('a,   'b)  table *   'a ->   'b option 
add  :   ('a,   'b)  table *   ('a *   'b)  -> unit 

*) 

(* memoPowerl  :   int ->  int  -> int *) 
fun memoPowerl e = 

case lookup  (specCode,  e)  of 
NONE => 

let 
cogen p = codePower e 
val p'  = p 

in 

add  (specCode,   (e,  p')); 

P' 
end 

I   SOME p => p; 

This function simply embeds the codePower func- 
tion within a wrapper that checks a hash table to 
determine whether or not a particular specialized ver- 
sion of the function exists. If it does, then it is re- 
turned, without need for further work. Otherwise, 
codePower is called, and a new function is generated, 
stored in the table, and returned. 

While memoPowerl saves generated code, so that it 
will benefit from past computations on the same ex- 
ponent, it does nothing to speed up the computation 
for two different exponents, even though they may 
share subcomputations. 

memoPower2 goes even further than memoPowerl. 
It saves the result of each internal call to the power 
function in a table, genExts, of generating exten- 
sions. Then if it is called to compute, for instance, 
n65 and then m34 it won't have to do any additional 
work to make a generating extension for the second 
call. 

(* 
specCode : (int, int -> int) table 
genExts : (int, (int -> int)$) table 
get : ('a, 'b) table * 'a -> 'b option 
add : ('a, 'b) table * ('a * >b) -> unit 
*) 

(* 
specCode (int, int -> int) table 

(* memoPower2 : int -> int 
fun memoPower2 e = 

-> int *) 



(case lookup (specCode, e) of 
NONE => 

let 

cogen p = mPower e 

val p' = p 
in 

add (specCode, (e, p')),' 

P' 
end 

I SOME p => p) 

(* mPower : int -> (int -> int)$ *) 

and mPower e = 

(case lookup (genExt, e) of 

NONE => 

let 

val p = bPower e 
in 

(add (genExts, (e, p)); 

P) 
end 

I SOME p => p) 

(* mPower : int -> (int -> int)$ *) 

and bPower e = 
if e = 0 then 

code (fn _ => 1) 
else 

let 

cogen p = mPower (e - 1) 

in 

code (fn b => b * (p b)) 

end; 

While specifying memoization behavior by hand in 
this fashion may be excessively tedious in some cases, 
it does allow the programmer to very carefully con- 
trol what and how memoization will occur. Further- 
more, generic memoization routines could be written 
that can easily accomodate most common memoiza- 
tion needs. 

4    The CCAM 

' In this section we present the CCAM, an ad-hoc 
extension of the CAM [6] which provides facilities for 

run-time code generation and which we use as the 
target of the compiler detailed in the next section. 

4.1    Fabius and Run-Time Code Gen- 
eration 

The Fabius compiler [10] delivers dramatic speedups 
over conventional compilers for some programs by 
compiling selected functions in its input to generating 
extensions. Using values obtained in earlier compu- 
tations, these generating extensions create code spe- 
cialized to perform later computations. While several 
different schemes for run-time code generation have 
been used in other systems [4, 3, 13, 12, 1] Fabius 
is able to achieve a remarkably low instruction- 
executed-to-instruction-specialized ratio by a unique 
combination of features. 

• Generating extensions produced by Fabius never 
manipulate source-level terms at run time. In- 
stead machine language programs are synthe- 
sized directly from machine language programs. 
Fabius in not unique in this respect: the Syn- 
thesis kernel [13, 12] and Tempo compilerfl] also 
share this property. 

• Fabius encodes terms to be specialized directly 
into the instruction stream, usually in the form 
of immediate operands to instructions. This is in 
contrast to systems which copy templates and fill 
in holes at run time, such as Tempo and the Syn- 
thesis kernel. Instruction stream encoding allows 
Fabius to be very flexible about the kinds of spe- 
cialization it can arrange to have performed at 
run time. 

• Programs compiled by Fabius allows dynamic 
staging of code, i.e. the number of times that a 
program specializes itself may be dependent on 
some value that will not be known until run time. 
This is necessary to fully exploit the specializa- 
tion opportunities in many situations. For exam- 
ple> many programs have a top-level loop which 
waits to receive input in some form, and then 
takes appropriate action. Conventional off-line 
partial evaluation will fail to serve such a pro- 
gram well because even multi-level partial eval- 



uation has no way to specialize on each of the 
variably many inputs. 

4.2    An   Abstract   Machine   for   Run- 
time Code Generation 

While developing the compilation technique for MLD 

we wanted to compile programs to include generating 
extensions that have the same three properties that 
we list above for Fabius. We also thought it desirable 
to abstract away as much as possible from the details 
of individual architectures. However, since we want 
to create generating extensions that do not manipu- 
late source level terms, but instead generates machine 
instructions directly, details of the machine to which 
we compile must find their way into our translation 
scheme. For this reason we developed the CCAM. We 
believe it to be a reasonable formalism that provides 
that capabilities that we need, while hiding details 
about individual architectures and instruction sets. 

The primary novelty of the CCAM is the emit(i) 
instruction. It is intended to represent the series of 
instructions required on a real computer to produce 
the instruction i in a specialized program. As will be 
made more clear below, the CCAM encodes a gen- 
erating extension as a series of emit(i) instructions. 
This is designed to emulate the technique of run-time 
instruction encoding used in the Fabius compiler. 

As an example of this form of code generation con- 
sider the instruction emit(add) . If this instruction 
were compiled to real machine instructions it might 
be represented by three instructions, one which con- 
tained the lower 16 bits of the add instruction in an 
immediate load low instruction, one which contained 
the upper 16 bits, and finally one to write the assem- 
bled instruction to memory. A more sophisticated 
specialization system might compile emit (add) to to 
a series of instructions which would test the values of 
the operands of the add instruction at specialization 
time (if they are available) and eliminate the instruc- 
tion altogether if either one is 0. 

That we wish to produce multi-staged programs is 
a potential problem for our abstract machine. If we 
encode generating extensions with emit(i) instruc- 
tions, must a program which contains a generating 
extension which produces code which is itself a gen- 

erating extension give rise to instructions of the form 
emit (emit (i))? If so, then a chain of n generating 
extensions could lead to n nested emits. 

Observe, however, that on a machine with fixed- 
length instructions there is a limited amount of space 
available for immediate operands, and so if instruc- 
tions to be emitted are embedded in instructions in 
the instruction stream, it will take at least two in- 
structions to represent one emitted instruction. Fur- 
thermore it could take 2n instructions to represent 

emit (emit (■ • -emit(i) • ■ •)). For this reason, nested 
emits are not allowed on the CCAM, and our compi- 
lation scheme needs to take special steps in order to 
allow multi-level specialization. We show how to do 
this in section 5. 

4.3    Instructions 

The CCAM has the usual seven instructions associ- 
ated with the CAM, and five more for code genera- 
tion. emit(f), which has already been described, cre- 
ates the instruction i in a new, dynamically created 
code sequence, called an arena. The lift instruc- 
tion residualizes a value into an arena, arena creates 
a new arena, while call inserts dynamically gener- 
ated code from an arena into the current instruction 
stream. Finally merge merges two arenas by inserting 
one as a function in the other. 

Simple Inst 

Composite Inst I 

Values v, u 

Code Blocks B 

Sequences P 

Stacks S 

id | f st | snd | push 
| swap | cons | app 
| 'v | lift | arena 
| merge | call 

i | emit(i) | Cur(P) 

(v,u)\[v:P]\B\{) 

{P} 

■\I;P 

■\v::S 



4.4    Transitions 

A configuration, (S,P), of the CCAM consists of a 
stack of values and an instruction sequence, repre- 
senting the current instruction stream. We will rou- 
tinely omit the final • on stacks and instruction se- 
quences. We use P'@P to represent the obvious se- 
quence obtain by appending the sequences P to the 
sequence P'. Figure 3 lists the transitions of the 
CCAM. 

5    Compilation 

The translation from AD to CCAM code is detailed 
in this section. The translation is divided into two 
parts: translation of code which is not initially inside 
a code generator, and the translation of code genera- 
tors. These two translations are represented by [M]g 
and [Mjf£. 

[M]s denotes the translation of non-code- 
generating code M in a context E, which simply de- 
scribes the location of variables in the run-time envi- 
ronment. Variable contexts are built from variables 
and the empty context as follows: 

VariableEnvironments    E, LE E,u 

To save space and for convenience we will of- 
ten write emit(i) as i, and the pairing operators 
push,swap, and cons as '(', ',', and ')', respectively. 

The rules for translating applications, non-modal 
variables, and abstractions in a non-code-generating 
context are the same as those in [6]. We compile code 
expressions to generating extensions, which are func- 
tions from arenas to arenas. An extension emits its 
code into its argument arena, and returns that trans- 
formed arena. Modal variables must select out of the 
environment the generating extension to which it is 
bound, and apply the extension to a new arena, and 
then finally jump to the newly created code. Thus, 
it is when modal variables are referenced outside of 
code constructs that code generation actually occurs. 
Finally, the let cogen construct translates to code 
which augments the environment with the result of 
the bound expression and then executes the body of 
the expression. 

The [M]f£ relation compiles a An term into a 
generating extension. It uses two contexts, an "early" 
context E which will hold the location of variables in 
the environment from all stages, and a "late" context 
LE, which is really just a pointer into the early con- 
text that marks the division between variables avail- 
able at generation time and those which will only 
be available later when the generated code is run. 
The translation rules for applications and non-modal 
variables underneath code constructors are similar 
to those for their non-code-generating relatives, ex- 
cept the instructions are buried under emit() in- 
structions. The abstraction rule, on the other hand, 
is complicated considerably by the fact that the ar- 
gument of a Cur is a sequence of instructions, and in- 
structions must be emitted individually. This is the 
reason for the merge instruction. It enables us to emit 
code to a new arena and then treat that code as the 
body of a function. Implemented on a real computer, 
this would correspond to the fact that the text of a 
function is typically stored in a separate area, and a 
function call involves jumping to the location of the 
function. 

Translating modal variables under code construc- 
tors depends on where the variable is bound. If it is 
bound under the same code constructor in which the 
variable finds itself, then there is no generating exten- 
sion yet available in the environment for it, and so it 
must be rebuilt as a reference to its binder. If, on the 
other hand, it is bound outside the code construc- 
tor, then it should be applied to the current arena, 
thereby effectively substituting its code into the cur- 
rent code. 

The primary difficulty in the compilation is avoid- 
ing nested emits. We achieve this by arranging to 
have generating extensions specialize all of the code 
that they contain, except the code for other generat- 
ing extensions. This results in a rather complicated 
looking case in the compilation for code expressions 
under other code constructors. Essentially, the code 
arranges to have a closure containing the body of the 
code expression inserted into the arena. This closure 
is explicitly applied to the "late" environment so that 
it can access all the variables bound within it. 

The boxed lift and let cogen rules are mostly 
emitted versions of the unboxed forms, except that 



Stack Program Stack Program 
S id;P S P 
(v, u) :: S fst;P v.-.S P 
(v, u) :: S snd;P u :: S P 
vr.S 'u;P u :: S P 
v.-.S push;P v :: v :: S P 
v :: u :: S swap;P u :: v :: S P 
v :: u :: S cons;P (u, v) :: S P 
v.-.S Cur(P');P [v : P'] -.: S P 
([v.P'},u)::S app;P (v, u) :: S P'@P 
(v,{P'))"S emit(i); P (v,{P'@(i; •)}):: S P 
(v,{P'})::S lift;P (v,{P'@(<v;-)})::S P 
v.-.S arena; P {■}■■■■ s P 
({P'},(v,{P"}))-- S    merge; P («,{P";Cur(P')}) ::S P 
(v,{P'})"S call;P v.-.S P'@P 

Figure 3: Transitions of the CCAM 

the lift rules needs to go through the same contor- 
tions as abstractions to insert a Cur into the arena. 

6      ML    compiler 

We have implemented a prototype MLD compiler, 
for a large subset of core ML, including datatypes, 
refence cells, and arrays, extended with the modal 
constructs. All of the programs presented in this 
paper are working programs compilable by our com- 
piler. The compiler generates code for the CCAM ex- 
tended with support for conditionals, recursion, and 
various base types. 

In addition, we have built a CCAM simualtor on 
which to run the output of our compiler. While 
CCAM instructions are rather abstract compared to 
native machine code, we can still observe the bene- 
fits of specialization by counting reduction steps in 
CCAM programs. 

Computation Reductions 
evalpf on first telnet packet 
evalpf on nth telnet packet 

9163 
9163 

bevalpf on first telnet packet 
bevalpf on nth telnet packet 

11984 
1104 

evalPoly (47,polyl) 807 
specPoly polyi 
polyiTarget 47 

443 
175 

compPoly polyl 
eval codeGenerator 
mlPolyFun 47 

553 
200 
74 

Table 1: Reduction steps on the CCAM for various 
functions in the text 

7    Conclusion 

We have designed and implemented a compiler for the 
language ML    which compiles code expressions into 
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get(a, (E, a)) 
get(a,(E,b)) 

get(a, (E, a)) 
Ü£(a, (£,&)) 

MB 

[MNJE 

ME 
[code MJE 
[lift M}E 

[let cogen u = M in N}E 

ME 
LE 

l\x.MjfE 

\MN}E 

snd 
f st; get(a, E) 

snd 
fst; get(a,E) 

get(x, E) 
Cur([M]£) 
([M]£,[JVlB>;app 

{get(u, E), arena); app; call 
Cur([M]f) 
[M]£.;Cur(lift) 

IE);IN}(E,U) 

LE 

get{x, LE) 

((fst, arena); [M]^ 
<[M]fB,[iV]fB);app 

(E,x) ; snd, id); merge 

iniE 
[code M]f£ 

[lift M\lE 

[let cogen « = M in 7V]fB 

(fst; qetju, Li?),arena); app; call       if u is in LE1 

(fst, (f st;get(u, E), snd); app; snd)    otherwise 
((fst, ('(); Cur(snd; Cur([Mjf)), snd); lift; snd), id); app 
[M]££; ((fst, arena); lift; snd, id);merge 

(IMI
E

LE)äH
E

'
U) 

U(LE,u) 

Figure 4: Compilation rules 
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code generators. The compiler targets the CCAM, an 
extension of the CAM carefully designed to emulate 
the style of run-time code generation first provided 
by the Fabius compiler. 

In our early experience with the MLD language and 
our compiler, we have been able to express precisely 
the staging of computations necessary to take best 
advantage of the run-time code generation facilities 
of the CCAM. This experience is an early indication 
that a language that provides explicit control over 
staging decisions can be a practical way to improve 
the performance of programs. 
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